Discovery May Prevent or Treat Diabetic Cardiomyopathy

Researchers make a discovery that may lead to the prevention and treatment of a common form of heart damage found in people with diabetes.


Cardiac complications are the number one cause of death among diabetics. Now a team of scientists has uncovered a molecular mechanism involved in a common form of heart damage found in people with diabetes.

A research team from The University of Texas Medical Branch at Galveston in collaboration with Baylor College of Medicine, University of California San Diego and the University of Texas at Dallas have published their findings the journal Cell Reports.

People with diabetes have a two to five time higher risk of developing cardiovascular diseases. For decades physicians have noticed unhealthy changes in the hearts of diabetics called diabetic cardiomyopathy, which is a disorder of the heart muscle that can lead to heart failure.

Cardiac Muscle
Cardiac Muscle

The molecular mechanisms responsible for this cardiac disorder are poorly understood, although they are key to revealing new targets for the discovery of better treatments and development of more accurate diagnostics.

RNA provides the blueprint for making the protein building blocks of cells. The RNA is cut or spliced to generate mRNA used to build proteins. RNA splicing mistakes are associated with many human diseases because they lead to production of the wrong or harmful proteins.

Continue Reading Below ↓↓↓

The research team has previously shown that splicing is incorrectly regulated and levels of the splicing regulator RBFOX2 are elevated in diabetic heart tissue.

The current study sought to further investigate how RBFOX2 regulation contributes to splicing defects seen in diabetic hearts and the consequences of splicing changes on cardiac function.

The UTMB-led study found that RBFOX2 binds to 73 percent of the RNA that are mis-spliced in diabetic heart tissues. This alternative splicing was found to impair normal gene expression patterns in the heart, especially genes important for molecular metabolism, programmed cell death, protein trafficking and calcium handling in heart muscle tissue. Calcium balance is important in regulating a heartbeat.

Lead author Mugé Kuyumcu-Martinez, Ph.D.
Lead author Mugé Kuyumcu-Martinez, Ph.D.

“We discovered that RBFOX2 function is disrupted in diabetic hearts before cardiac complications are noticeable and RBFOX2 dysregulation contributes to abnormal calcium signaling in the heart,” said N. Muge Kuyumcu-Martinez, lead author and UTMB assistant professor in the department of biochemistry and molecular biology. “Identifying RBFOX2 as an important contributor to diabetic complications and learning how it is dysregulated may allow us to develop new tools to diagnose, prevent or treat diabetic cardiomyopathy in the future.”

Other authors include UTMB’s Curtis A. Nutter, Elizabeth Jaworski, Sunil K. Verma, Ismail Abass, Talha Ijaz, Allan Brasier and Nisha J. Garg; Vaibhav Deshmukh, Qiongling Wang and Xander H. Wehrens from Baylor College of Medicine; Olga Botvinnik and Gene Yeo from the University of California San Diego and Mario Lozano from the University of Texas at Dallas.

Source: University of Texas Medical Branch at Galveston
Journal: Cell Reports
Photo Credit (): University of Texas Medical Branch at Galveston
Photo (Cardiac Muscle): Author: BruceBlaus / CC License

LEAVE A REPLY

Please enter your comment!
Please enter your name here