Scientists from the Center for Applied Medical Research (CIMA) of the University of Navarra (Spain) have discovered that cardiotrophin 1, a protein synthesized by muscle cells and adipose tissue, has a marked effect on fat and glucose metabolism. "These new findings add to those we already know on this compound such the anti-ischemic and cytoprotective effects showed in acute liver damage and solid organ transplants gives CT-1 great possibilities to be developed in various serious conditions", commented Pablo Ortiz, CEO of Digna Biotech.
The study was published in the August issue of Cell Metabolism, most prestigious journal in Metabolism and further details were described in the 25th August of SciBX, the Biocentury/Nature publication. The researchers found that the administration of cardiotrophin 1 accelerates the elimination of fat from the adipose tissue and increases the rate at which fat is burnt in muscles. Treatment of obese and diabetic mice with cardiotrophin 1 increases energy expenditure, reduces food intake and corrects obesity and diabetes. Investigators noticed that, in addition to its effects on fat metabolism, cardiotrophin 1 promotes the entrance of glucose into the cells and increases the sensitivity to insulin. The investigation has been led by M. Bustos, J. Prieto and MJ Moreno-Aliaga at CIMA.
Cardiotrophin 1 is co-developed for its use in organ transplantation and tissue regeneration by Digna Biotech and Biotecnol (The Consortium). Both of the companies signed an Exclusive License and Option Agreement with Genentech, Inc (a fully owned subsidiary of the Roche group) on September 2009. Pablo Ortiz remarked: "Cardiotrophin 1 showed a very interesting effect on fat metabolism which deserves to be explored in a clinical setting. We are ready to recruit healthy volunteers in the Phase I trial before the end of the year. Phase II in liver resection is scheduled for the second quarter of 2012. We are also confident that these new applications and the progress on the clinical development will allow us to forge partnerships with other biopharmaceutical companies to reach the patients as soon as possible". According to Pedro de Noronha Pissarra, CEO of Biotecnol: "expanding the use of such a promising molecule to other fields of use, where unmet needs exist, will build additional value to the current work. Its clear from the current findings on the mechanism of action of Cardiotrophin 1 in fat metabolism, that clinical work should be pursued and potentially new partnerships in order to expand such work can now be equated".
Pre-clinicial and clinical development of cardiotrophin 1 was funded by private and public Spanish entities: ClaveSuan, the Center for Industrial and Technological Development (CDTI), and the Government of Navarra. Only in liver resection and transplantation, cardiotrophin 1 may generate revenues of 350 millions of euros per year.
About Cardiotrophin 1 (CT-1)
Continue Reading Below ↓↓↓
Cardiotrophin 1 is a member of the interleukin-6 cytokine family. Recently, investigators from the Centre for Applied Medical Research (CIMA) have discovered that this protein is able to stimulate hepatic regeneration as well as to protect hepatocytes during clinical situations of acute hepatic damage. This means that CT-1 may be beneficial for those patients who undergo liver transplantation or extensive hepatic resection. The use of CT-1 in liver transplantation has already been granted Orphan Drug Status by both the FDA and the EMEA. In addition, cardiotrophin 1 has recently been shown to prevent graft injury and inflammatory response and prolong survival in animal kidney transplant model, and acute liver failure.
Source: Digna Biotech S.L